Features

* High-performance, Low-power AVR® 8-bit Microcontroller
* RISC Architecture
— 130 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
* Nonvolatile Program and Data Memories

L [@
— 8K Bytes of In-System Self-programmable Flash

. ®
Endurance: 10,000 Write/Erase Cycles 8—b It AVR

— Optional Boot Code Section with Independent Lock bits
In-System Programming by On-chip Boot Program I
True Read-While-Write Operation M Icrocon t ro I I er
— 512 Bytes EEPROM .
Endurance: 100,000 Write/Erase Cycles Wlth 8K Bytes
— 512 Bytes Internal SRAM
— Up to 64K Bytes Optional External Memory Space In 'SyStem
— Programming Lock for Software Security
¢ Peripheral Features PI’O g famm ab I e
— One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Fl as h
Mode
Three PWM Channels
Programmable Serial USART

Master/Slave SPI Serial Interface ATm eg a8515

Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator ATm eg a8515|_
Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Three Sleep Modes: Idle, Power-down and Standby
¢ 1/O and Packages
— 35 Programmable I/O Lines
— 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad MLF
e Operating Voltages
— 2.7 -5.5V for ATmega8515L
— 4.5-5.5V for ATmega8515
Speed Grades
— 0 -8 MHz for ATmega8515L
— 0-16 MHz for ATmega8515
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Pin Configurations

Figure 1. Pinout ATmega8515
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Overview

The ATmega8515 is a low-power CMOS 8-bit microcontroller based on the AVR

enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega8515 achieves throughputs approaching 1 MIPS per MHz allowing the sys-
tem designer to optimize power consumption versus processing speed.

Block Diagram

vCccC

Figure 2. Block Diagram
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Disclaimer

AT90S4414/8515 and
ATmega8515
Compatibility

AT90S4414/8515 Compatibility
Mode
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The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega8515 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, an
External memory interface, 35 general purpose 1/O lines, 32 general purpose working
registers, two flexible Timer/Counters with compare modes, Internal and External inter-
rupts, a Serial Programmable USART, a programmable Watchdog Timer with internal
Oscillator, a SPI serial port, and three software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and Interrupt
system to continue functioning. The Power-down mode saves the Register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or hard-
ware reset. In Standby mode, the crystal/resonator Oscillator is running while the rest of
the device is sleeping. This allows very fast start-up combined with low-power
consumption.

The device is manufactured using Atmel’s high density nonvolatile memory technology.
The On-chip ISP Flash allows the Program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-programmable Flash on a monolithic chip, the Atmel ATmega8515
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The ATmega8515 is supported with a full suite of program and system development
tools including: C Compilers, Macro assemblers, Program debugger/simulators, In-cir-
cuit Emulators, and Evaluation Kits.

Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

The ATmega8515 provides all the features of the AT90S4414/8515. In addition, several
new features are added. The ATmega8515 is backward compatible with
AT90S4414/8515 in most cases. However, some incompatibilities between the two
microcontrollers exist. To solve this problem, an AT90S4414/8515 compatibility mode
can be selected by programming the S8515C Fuse. ATmega8515 is 100% pin compati-
ble with AT90S4414/8515, and can replace the AT90S4414/8515 on current printed
circuit boards. However, the location of Fuse bits and the electrical characteristics dif-
fers between the two devices.

Programming the S8515C Fuse will change the following functionality:

» The timed sequence for changing the Watchdog Time-out period is disabled. See
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page
52 for details.

* The double buffering of the USART Receive Registers is disabled. See “AVR
USART vs. AVR UART — Compatibility” on page 135 for details.

«  PORTE(2:1) will be set as output, and PORTEO will be set as input.

4 ATMEegaS515(L)  m—

2512F-AVR-12/03



A\ T ega8515(L)

Pin Descriptions

VCC
GND

Port A (PA7..PAO)

Port B (PB7..PB0)

Port C (PC7..PCO)

Port D (PD7..PDO)

Port E(PE2..PEO)

RESET

XTAL1

XTAL2

2512F-AVR-12/03

Digital supply voltage.
Ground.

Port A is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. When pins PAO to PA7 are used as inputs and are externally
pulled low, they will source current if the internal pull-up resistors are activated. The Port
A pins are tri-stated when a reset condition becomes active, even if the clock is not
running.

Port A also serves the functions of various special features of the ATmega8515 as listed
on page 66.

Port B is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega8515 as listed
on page 66.

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega8515 as listed
on page 71.

Port E is an 3-bit bi-directional 1/0O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega8515 as listed
on page 73.

Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
18 on page 45. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

AIMEL 5
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About Code This documentation contains simple code examples that briefly show how to use various
Examples parts of the device. These code examples assume that the part specific header file is

included before compilation. Be aware that not all C Compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.

6 ATMEegaS515(L)  m—
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AVR CPU Core

Introduction

Architectural Overview

2512F-AVR-12/03

This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Figure 3. Block Diagram of the AVR Architecture
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In order to maximize performance and parallelism, the AVR uses a Harvard architecture
— with separate memories and buses for program and data. Instructions in the Program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the Program memory. This concept
enables instructions to be executed in every clock cycle. The Program memory is In-
System re programmable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,
the operation is executed, and the result is stored back in the Register File — in one
clock cycle.

AIMEL 7
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ALU — Arithmetic Logic
Unit

ATMEL

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing — enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash Pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every Program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memory
section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The Stack Pointer SP is read/write accessible in the 1/0O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its Control Registers in the 1/0O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate interrupt
vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, $20 - $5F.

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories — arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

8 ATMEegaS515(L)  m—
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Status Register

2512F-AVR-12/03

The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0

| I | 7 | H | s | v N z c | srec
Read/Write RIW R/W R/W R/W RIW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 —I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individ-
ual interrupt enable control is then performed in separate Control Registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

e Bit 6 — T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied

into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

» Bit 5 - H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.
« Bit4-S: Sign Bit, S=N [V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

e Bit 3-V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.

e Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit 0-C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

AIMEL 0

L [G)



ATMEL

General Purpose The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
Register File achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

e One 8-bit output operand and one 8-bit result input
« Two 8-bit output operands and one 8-bit result input
«  Two 8-bit output operands and one 16-bit result input
* One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

7 0 Addr.
RO $00
R1 $01
R2 $02
R13 $0D
General R14 $OE
Purpose R15 $OF
Working R16 $10
Registers R17 $11
R26 $1A X-register Low Byte
R27 $1B X-register High Byte
R28 $1C Y-register Low Byte
R29 $1D Y-register High Byte
R30 $1E Z-register Low Byte
R31 $1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a Data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.

10 ATMEegaS515(L)  m—
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The X-register, Y-register, and
Z-register

Stack Pointer

2512F-AVR-12/03

The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the Data Space.
The three indirect address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-, Y-, and Z-registers

15 XH XL
X-register I 7 0 I 7 0 I
R27 ($1B) R26 ($1A)
15 YH YL
Y-register |7 of7 o]
R29 ($1D) R28 ($1C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R3L (S1F) R30 (SLE)

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the Instruction Set
reference for details).

The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by one when
data is pushed onto the Stack with the PUSH instruction, and it is decremented by two
when the return address is pushed onto the Stack with subroutine call or interrupt. The
Stack Pointer is incremented by one when data is popped from the Stack with the POP
instruction, and it is incremented by two when address is popped from the Stack with
return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0
0 0 0 0 0

AIMEL 1
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Instruction Execution
Timing

Reset and Interrupt
Handling
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This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkcp, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions
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Figure 7 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 7. Single Cycle ALU Operation
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The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate program vector in the Program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 177 for details.

The lowest addresses in the Program memory space are by default defined as the
Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on
page 53. The list also determines the priority levels of the different interrupts. The lower
the address the higher is the priority level. RESET has the highest priority, and next is
INTO — the External Interrupt Request 0. The Interrupt Vectors can be moved to the start
of the Boot Flash section by setting the IVSEL bit in the General Interrupt Control Regis-
ter (GICR). Refer to “Interrupts” on page 53 for more information. The Reset Vector can

12 ATMEegaS515(L)  m—
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also be moved to the start of the Boot Flash section by programming the BOOTRST
Fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page 164.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding Interrupt Enable bit is cleared, the Interrupt Flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding interrupt flag(s) will be set and remembered until the Global Interrupt Enable
bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence..

Assembly Code Example

in rl6e, SREG ; store SREG val ue

cli ; disable interrupts during tined sequence
sbi EECR, EEMAE ; start EEPROM wite

sbi EECR, EEWE

out SREG r 16 ; restore SREG value (I-bit)

C Code Example

char cSREG

CSREG = SREG /* store SREG val ue */

/* disable interrupts during timed sequence */
_CLI();

EECR | = (1<<EEMAE); /* start EEPROMwite */
EECR | = (1<<EEVE);

SREG = ¢cSREG /* restore SREG value (l-bit) */

AIMEL 12
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Interrupt Response Time
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When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set global interrupt enable
sl eep; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the Program Vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter is
pushed onto the Stack. The Vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the I-bit in SREG is set.

14 ATMEegaS515(L)  m—
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AVR ATmega8515
Memories

In-System
Reprogrammable Flash
Program memory
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This section describes the different memories in the ATmega8515. The AVR architec-
ture has two main memory spaces, the Data Memory and the Program memory space.
In addition, the ATmega8515 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

The ATmega8515 contains 8K bytes On-chip In-System Reprogrammable Flash mem-
ory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is
organized as 4K x 16. For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega8515 Program Counter (PC) is 12 bits wide, thus addressing the 4K Program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming” on page 164. “Memory Programming” on page 177 con-
tains a detailed description on Flash data serial downloading using the SPI pins.

Constant tables can be allocated within the entire Program memory address space, see
the LPM — Load Program memory instruction description.

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 12.

Figure 8. Program memory Map

$000
Application Flash Section
Boot Flash Section
$FFF

AIMEL 15
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SRAM Data Memory

ATMEL

Figure 9 shows how the ATmega8515 SRAM Memory is organized.

The lower 608 Data Memory locations address the Register File, the /O Memory, and
the internal data SRAM. The first 96 locations address the Register File and 1/0O Mem-
ory, and the next 512 locations address the internal data SRAM.

An optional external data SRAM can be used with the ATmega8515. This SRAM will
occupy an area in the remaining address locations in the 64K address space. This area
starts at the address following the internal SRAM. The Register File, I/O, Extended I/O
and Internal SRAM occupies the lowest 608 bytes in normal mode, so when using 64KB
(65536 bytes) of External Memory, 64928 Bytes of External Memory are available. See
“External Memory Interface” on page 24 for details on how to take advantage of the
external memory map.

When the addresses accessing the SRAM memory space exceeds the internal Data
memory locations, the external data SRAM is accessed using the same instructions as
for the internal Data memory access. When the internal data memories are accessed,
the read and write strobe pins (PD7 and PD6) are inactive during the whole access
cycle. External SRAM operation is enabled by setting the SRE bit in the MCUCR
Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access
of the internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD,
PUSH, and POP take one additional clock cycle. If the Stack is placed in external
SRAM, interrupts, subroutine calls and returns take three clock cycles extra because the
two-byte Program Counter is pushed and popped, and external memory access does
not take advantage of the internal pipe-line memory access. When external SRAM inter-
face is used with wait-state, one-byte external access takes two, three, or four additional
clock cycles for one, two, and three wait-states respectively. Interrupts, subroutine calls
and returns will need five, seven, or nine clock cycles more than specified in the instruc-
tion set manual for one, two, and three wait-states.

The five different addressing modes for the Data memory cover: Direct, Indirect with
Displacement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 512 bytes of inter-
nal data SRAM in the ATmega8515 are all accessible through all these addressing
modes. The Register File is described in “General Purpose Register File” on page 10.

16 ATMEegaS515(L)  m—
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Figure 9. Data Memory Map

Data Memory
32 Registers $0000 - $001F
64 1/0 Registers | $0020 - $005F
$0060
Internal SRAM
(512 x 8)
$025F
$0260
External SRAM
(0 - 64K x 8)
| |
| |
| |
| I
e _ -
- 1
i !
| I
| I
| I
' | SFFFF

Data Memory Access Times This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkp, cycles as described in Figure
10.

Figure 10. On-chip Data SRAM Access Cycles
T1 T2 T3

S AN A N S N

CPU

| |
| | |
Address | Compute Address | X__ Address Valid |
| | |
Data 1 l { =
| | | *E
| | |
WR | L/ n\ =
| | | —
| | 4
Data ‘ t i 5
I I T I
I I I &
RD ! L/ :\
T T —
| | |
Memory Access Instruction Next Instruction
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EEPROM Data Memory

EEPROM Read/Write Access

The EEPROM Address
Register —- EEARH and EEARL

ATMEL

The ATmega8515 contains 512 bytes of data EEPROM memory. It is organized as a
separate data space, in which single bytes can be read and written. The EEPROM has
an endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 177 contains a detailed description on EEPROM Pro-
gramming in SPI or Parallel Programming mode.

The EEPROM Access Registers are accessible in the 1/0O space.

The write access time for the EEPROM is given in Table 1. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In
heavily filtered power supplies, V. is likely to rise or fall slowly on Power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
23. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

Bit 15 14 13 12 11 10 9 8
- - - - - - - EEARS EEARH
EEAR7 EEARG EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R R R R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 X
X X X X X X X X

* Bits 15..9 — Res: Reserved Bits

These bits are reserved bits in the ATmega8515 and will always read as zero.
* Bits 8..0— EEARS8..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL — specify the EEPROM
address in the 512 bytes EEPROM space. The EEPROM data bytes are addressed lin-
early between 0 and 511. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

18 ATMEegaS515(L)  m—
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The EEPROM Data Register —
EEDR

The EEPROM Control Register
— EECR
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Bit 7 6 5 4 3 2 1 0

| wss Lse | Eeor
Read/Write R/W RIW RIW R/W RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 7 6 5 4 3 2 1 0

| - - - - EERIE | EEMWE | EEWE EERE | EECR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 X 0

» Bits 7..4 — Res: Reserved Bits

These bits are reserved bits in the ATmega8515 and will always read as zero.
e Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

* Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.
* Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure

should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

ok whPE

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support — Read-While-Write Self-Programming” on
page 164 for details about boot programming.

AIMEL 19

L [G)



20

ATMEL

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEPROM access from the CPU.

Table 1. EEPROM Programming Time

Number of Calibrated RC
Symbol Oscillator Cycles® Typ Programming Time

EEPROM Write (from CPU) 8448 8.5ms

Note: 1. Uses 1 MHz clock, independent of CKSEL Fuse settings.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g., by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such
code is present, the EEPROM write function must also wait for any ongoing SPM com-
mand to finish.

ATMEegaS515(L)  m—
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Assembly Code Example

EEPROM wri t e:
; Wait for conpletion of previous wite
shi ¢ EECR, EEVE
rimp EEPROM wite
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Wite data (rl1l6) to data register
out EEDR r16
; Wite | ogical one to EEME
sbi EECR, EEMAE
; Start eepromwite by setting EEVE
shi EECR, EEVE
ret

C Code Example

voi d EEPROM wri te(unsi gned int ui Address, unsigned char ucData)
{
/* Wait for conpletion of previous wite */
whi | e(EECR & (1<<EEMVE))
/* Set up address and data registers */
EEAR = ui Address;
EEDR = ucDat a;
/* Wite | ogical one to EEME */
EECR | = (1<<EEMVE);
[* Start eepromwite by setting EEVE */
EECR | = (1<<EEVE);

AIMEL 2
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EEPROM Write During Power-
down Sleep Mode

ATMEL

The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

Assembly Code Example

EEPROM r ead:
; Wait for conpletion of previous wite
shi ¢ EECR, EEVEE
rj np EEPROM read
Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eepromread by witing EERE
sbi EECR, EERE
; Read data fromdata register
in r16, EEDR
ret

C Code Example

unsi gned char EEPROM read(unsi gned int ui Address)
{

/[* Wait for conpletion of previous wite */

whi | e(EECR & (1<<EEVE))

/* Set up address register */

EEAR = ui Addr ess;

[* Start eepromread by witing EERE */

EECR | = (1<<EERE);

/* Return data fromdata register */

return EEDR;

When entering Power-down Sleep mode while an EEPROM write operation is active,
the EEPROM write operation will continue, and will complete before the Write Access
time has passed. However, when the write operation is completed, the crystal Oscillator
continues running, and as a consequence, the device does not enter Power-down
entirely. It is therefore recommended to verify that the EEPROM write operation is com-
pleted before entering Power-down.

22 ATMEegaS515(L)  m—
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Preventing EEPROM
Corruption

I/O Memory

2512F-AVR-12/03

During periods of low V., the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply volt-
age. This can be done by enabling the internal Brown-out Detector (BOD). If the
detection level of the internal BOD does not match the needed detection level, an
external low V.. Reset Protection circuit can be used. If a Reset occurs while a
write operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.

The 1/O space definition of the ATmega8515 is shown in “Register Summary” on page
237.

All ATmega8515 I/Os and peripherals are placed in the /O space. The I/O locations are
accessed by the IN and OUT instructions, transferring data between the 32 general pur-
pose working registers and the 1/0 space. /O Registers within the address range $00 -
$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the instruction set section for more details. When using the I/O specific commands IN
and OUT, the I/0O addresses $00 - $3F must be used. When addressing I/O Registers as
data space using LD and ST instructions, $20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/0O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O Register, writing a one back into
any flag read as set, thus clearing the flag. The CBI and SBI instructions work with reg-
isters $00 to $1F only.

The I/0 and Peripherals Control Registers are explained in later sections.
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External Memory With all the features the External Memory Interface provides, it is well suited to operate
Interface as an interface to memory devices such as external SRAM and Flash, and peripherals
such as LCD-display, A/D, and D/A. The main features are:
* Four Different Wait State Settings (Including No wait State)
* Independent Wait State Setting for Different External Memory Sectors (Configurable
Sector Size)
* The Number of Bits Dedicated to Address High Byte is Selectable
* Bus Keepers on Data Lines to Minimize Current Consumption (Optional)

Overview When the eXternal MEMory (XMEM) is enabled, address space outside the internal
SRAM becomes available using the dedicated external memory pins (see Figure 1 on
page 2, Table 26 on page 65, Table 32 on page 69, and Table 38 on page 73). The
memory configuration is shown in Figure 11.

Figure 11. External Memory with Sector Select

0x0000
Internal Memory
0x25F
A 0x260
Lower Sector
SRWO01
SRWO00
———————— SRL[2..0]
External Memory Upper Sector
(0-64K x 8)
SRW11
SRW10
 / OXFFFF
Using the External Memory The interface consists of:
Interface + AD7:0: Multiplexed low-order address bus and data bus

e Al15:8: High-order address bus (configurable number of bits)
« ALE: Address latch enable

+ RD: Read strobe

« WR: Write strobe
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Address Latch Requirements

2512F-AVR-12/03

The control bits for the External Memory Interface are located in three registers, the
MCU Control Register - MCUCR, the Extended MCU Control Register - EMCUCR, and
the Special Function IO Register — SFIOR.

When the XMEM interface is enabled, it will override the settings in the data direction
registers corresponding to the ports dedicated to the interface. For details about this port
override, see the alternate functions in section “I/O Ports” on page 58. The XMEM inter-
face will auto-detect whether an access is internal or external. If the access is external,
the XMEM interface will output address, data, and the control signals on the ports
according to Figure 13 (this figure shows the wave forms without wait states). When
ALE goes from high to low, there is a valid address on AD7:0. ALE is low during a data
transfer. When the XMEM interface is enabled, also an internal access will cause activ-
ity on address-, data-, and ALE ports, but the RD and WR strobes will not toggle during
internal access. When the External Memory Interface is disabled, the normal pin and
data direction settings are used. Note that when the XMEM interface is disabled, the
address space above the internal SRAM boundary is not mapped into the internal
SRAM. Figure 12 illustrates how to connect an external SRAM to the AVR using an octal
latch (typically “74x573” or equivalent) which is transparent when G is high.

Due to the high-speed operation of the XRAM interface, the address latch must be
selected with care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V.
When operating at conditions above these frequencies, the typical old style 74HC series
latch becomes inadequate. The external memory interface is designed in compliance to
the 74AHC series latch. However, most latches can be used as long they comply with
the main timing parameters. The main parameters for the address latch are:

» Dto Q propagation delay (t,q)

+ Data setup time before G low (t,)

» Data (address) hold time after G low (y,)

The external memory interface is designed to guaranty minimum address hold time after
G is asserted low of t,, = 5 ns (refer to t, sxx_p/ti axx_st iN Table 98 to Table 105 on page
202). The D to Q propagation delay (t,y) must be taken into consideration when calculat-
ing the access time requirement of the external component. The data setup time before

G low (tg,) must not exceed address valid to ALE low (t,y, ) minus PCB wiring delay
(dependent on the capacitive load).

Figure 12. External SRAM Connected to the AVR

/IJ ,l> D[7:0]

. \—'\ T—N\

AD7:0 < D Q m— A[7:0]
ALE > G

AVR SRAM

N .

A15:8 A[15:8]
"RD l/> RD
‘WR > WR
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Pull-up and Bus Keeper

Timing

ATMEL

The pull-up resistors on the AD7:0 ports may be activated if the corresponding Port
Register is written to one. To reduce power consumption in sleep mode, it is recom-
mended to disable the pull-ups by writing the Port Register to zero before entering
sleep.

The XMEM interface also provides a bus keeper on the AD7:0 lines. The bus keeper
can be disabled and enabled in software as described in “Special Function IO Register —
SFIOR” on page 30. When enabled, the bus keeper will keep the previous value on the
AD7:0 bus while these lines are tri-stated by the XMEM interface.

External memory devices have various timing requirements. To meet these require-
ments, the ATmega8515 XMEM interface provides four different wait states as shown in
Table 3. It is important to consider the timing specification of the external memory
device before selecting the wait state. The most important parameters are the access
time for the external memory in conjunction with the set-up requirement of the
ATmega8515. The access time for the external memory is defined to be the time from
receiving the chip select/address until the data of this address actually is driven on the
bus. The access time cannot exceed the time from the ALE pulse is asserted low until
data must be stable during a read sequence (t, g t+ triru - tovry iN Table 98 to Table
105 on page 202). The different wait states are set up in software. As an additional fea-
ture, it is possible to divide the external memory space in two sectors with individual wait
state settings. This makes it possible to connect two different memory devices with dif-
ferent timing requirements to the same XMEM interface. For XMEM interface timing
details, please refer to Figure 89 to Figure 92, and Table 98 to Table 105.

Note that the XMEM interface is asynchronous and that the waveforms in the figures
below are related to the internal system clock. The skew between the Internal and Exter-
nal clock (XTAL1) is not guaranteed (it varies between devices, temperature, and supply
voltage). Consequently, the XMEM interface is not suited for synchronous operation.

Figure 13. External Data Memory Cycles without Wait State (SRWn1 =0 and
SRWnO = 0)®

N T N T2 N T3
System Clock (CLKp)  / \ / \_/_\
1

i i
1
ALE _:_/_:—\
'
1

T4

4
a
C

A15:8  Prév. Addr. X Address

1
|
1
|
1
1
1
|
X X
DA7:0  Prév. Data :X Address )@(: Data
. X .
. .
1 1
| |
1
i
1
|

X

Write

DAT:0 (XMBK =0) _Prdv. Data N ddress & o | )
' '
X Data

Read

DA7:0 (XMBK = 1)  Prév. Data X Address

: X
RD ' .
: :
1 1

i
/1

—’

Note: 1. SRWn1 = SRW11 (upper sector) or SRWO1 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O (lower sector)
The ALE pulse in period T4 is only present if the next instruction accesses the RAM
(internal or external).
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Figure 14. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1

T1 ll T2 ll T3 ] T4 ] T5
I I 1 1

System Clock (CLKgpy)) _/i \ /:/ \ /_\___/_\ /_\ E/_
ALE _i_/_g—\

A15:8  Prév. Addr. X Address
. . 2
DA7:0  Prév. Data :X Address >@< Data =
' .
WR '
! \
|

DA7:0 (XMBK = 0) ~ Prév. Data
T
.

Address >—«« Data
X Daa

DA7:0 (XMBK =1)  Prév. Data Address

.

RD .
'

'

\

1%1

Note: 1. SRWn1 = SRW11 (upper sector) or SRWO1 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWOO (lower sector)
The ALE pulse in period T5 is only present if the next instruction accesses the RAM
(internal or external).

Figure 15. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0%
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: : \ ' :
i H ' i
ALE H . 1 . . /
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RD : : ] | : |

Note: 1. SRWn1 = SRW11 (upper sector) or SRWO1 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O (lower sector)
The ALE pulse in period T6 is only present if the next instruction accesses the RAM
(internal or external).
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Figure 16. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1®

! T ! T ! T3 : T4 ! 5 ! 6 : 7 !
1 1 1 1 1 1
System Clock (CLKcpy) / \ / \ / \ ) 4 \ / \ / / \ y
1 1 1 1 f 1 1 \
1 1 1 1 1 1
ALE _:_/_:_\ 1 1 1 1 1 /_:_
1 T T 1 T T 1
1 1 1 1 ’ 1 1 (.
A15:8  Prav. Addr. D¢ | Address 1 | ] ) )C
T 1 T T 1 T T 1 @
1 1 1 1 1 1 | £
DA7:0  Prav. Data IX Address X>§<X| Data 1 1 1 1 X: 2
T 1 T T T T T f
1 1 1 1 I ] 1 1
WR 1 1 N\ 1 1 W/ 1 |
1 1 1 T T T 1 [
1 X 1 1 ’ 1 1 1
DA7:0 (XMBK = 0)  Prav. Data X Address Y——+—l Data 1 | 1) C
T 1 1 T T T 1 f
1 1 1 1 I 1 1 1 %
DA7:0 (XMBK = 1) Prav. Data X Address 1 X pata 1 \ | | X: g
T 1 T T T T T 1
1 1 1 1 I 1 1 1
R 1 1 N\ 1 1 W/ 1 1
1 1 1 T T T 1 -

Note: 1. SRWn1 = SRW11 (upper sector) or SRWO1 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWOO (lower sector)
The ALE pulse in period T7 is only present if the next instruction accesses the RAM
(internal or external).

Bit 7 6 5 4 3 2 1 0

I SRE SRW10 SE SM1 ISC11 ISC10 ISCO01 ISC00 I MCUCR
Read/Write R/W R/W R/W R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0,
A15:8, ALE, WR, and RD are activated as the alternate pin functions. The SRE bit over-
rides any pin direction settings in the respective Data Direction Registers. Writing SRE
to zero, disables the External Memory Interface and the normal pin and data direction
settings are used.

* Bit 6 — SRW10: Wait State Select Bit

For a detailed description, see common description for the SRWn bits below (EMCUCR
description).

Bit 7 6 5 4 3 2 1 0

| swo SRL2 SRL1 SRLO | SRWO1 | SRW00 | SRwil ISc2 | EMCUCR
Read/Write R/W RIW RIW R/W RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit6..4—-SRL2, SRL1, SRLO: Wait State Sector Limit

It is possible to configure different wait states for different external memory addresses.
The External Memory address space can be divided in two sectors that have separate
wait state bits. The SRL2, SRL1, and SRLO bits select the splitting of these sectors, see
Table 2 and Figure 11. By default, the SRL2, SRL1, and SRLO bits are set to zero and
the entire External Memory address space is treated as one sector. When the entire

28 ATMEegaS515(L)  m—

2512F-AVR-12/03



A\ T ega8515(L)

SRAM address space is configured as one sector, the wait states are configured by the
SRW11 and SRW10 bits.

Table 2. Sector Limits with Different Settings of SRL2..0

SRL2 SRL1 SRLO Sector Limits
0 0 0 Lower sector = N/A
Upper sector = 0x0260 - OxFFFF
0 0 1 Lower sector = 0x0260 - Ox1FFF
Upper sector = 0x2000 - OxFFFF
0 1 0 Lower sector = 0x0260 - Ox3FFF
Upper sector = 0x4000 - OxFFFF
0 1 1 Lower sector = 0x0260 - OX5FFF
Upper sector = 0x6000 - OxFFFF
1 0 0 Lower sector = 0x0260 - OX7FFF
Upper sector = 0x8000 - OxFFFF
1 0 1 Lower sector = 0x0260 - OX9FFF
Upper sector = 0xA000 - OxFFFF
1 1 0 Lower sector = 0x0260 - OXBFFF
Upper sector = 0xC000 - OXFFFF
1 1 1 Lower sector = 0x0260 - OXDFFF
Upper sector = 0XEOOO - OXFFFF

e Bit 1 and Bit 6 MCUCR — SRW11, SRW10: Wait State Select Bits for Upper
Sector

The SRW11 and SRW10 bits control the number of wait states for the upper sector of
the External Memory address space, see Table 3.

e Bit 3..2 — SRWO01, SRWO00: Wait State Select Bits for Lower Sector

The SRWO01 and SRWOO bits control the number of wait states for the lower sector of
the External Memory address space, see Table 3.

Table 3. Wait States®
SRWn1 | SRWnO | Wait States

0 0 No wait states.
0 1 Wait one cycle during read/write strobe.
1 0 Wait two cycles during read/write strobe.

Wait two cycles during read/write and wait one cycle before driving out

1 1 new address.

Note: 1. n=0or 1 (lower/upper sector).
For further details of the timing and wait states of the External Memory Interface, see
Figure 13 to Figure 16 how the setting of the SRW bits affects the timing.
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Bit 7 6 5 4 3 2 1 0

I - XMBK XMM2 XMM1 XMMO PUD = PSR10 | SFIOR
Read/Write R/W RIW R/W RIW R/W R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 6 — XMBK: External Memory Bus Keeper Enable

Writing XMBK to one enables the Bus Keeper on the AD7:0 lines. When the Bus Keeper
is enabled, AD7:0 will keep the last driven value on the lines even if the XMEM interface
has tri-stated the lines. Writing XMBK to zero disables the Bus Keeper. XMBK is not
qualified with SRE, so even if the XMEM interface is disabled, the Bus Keepers are still
activated as long as XMBK is one.

e Bit 5..3 - XMM2, XMM1, XMMO: External Memory High Mask

When the External Memory is enabled, all Port C pins are used for the high address
byte by default. If the full 64,928 bytes address space is not required to access the
External Memory, some, or all, Port C pins can be released for normal Port Pin function
as described in Table 4. As described in “Using all 64KB Locations of External Memory”
on page 32, it is possible to use the XMMn bits to access all 64KB locations of the Exter-
nal Memory.

Table 4. Port C Pins Released as Normal Port Pins when the External Memory is
Enabled

XMM2 | XMM1 | XMMO | # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full 64,928 Bytes Space) None

0 0 1 7 PC7

0 1 0 6 PC7 - PC6

0 1 1 5 PC7 - PC5

1 0 0 4 PC7 - PC4

1 0 1 3 PC7 - PC3

1 1 0 2 PC7 - PC2

1 1 1 No Address High bits Full Port C

Since the external memory is mapped after the internal memory as shown in Figure 11,
the external memory is not addressed when addressing the first 608 bytes of data
space. It may appear that the first 608 bytes of the external memory are inaccessible
(external memory addresses 0x0000 to Ox025F). However, when connecting an exter-
nal memory smaller than 64 KB, for example 32 KB, these locations are easily accessed
simply by addressing from address 0x8000 to 0x825F. Since the External Memory
Address bit A15 is not connected to the external memory, addresses 0x8000 to 0x825F
will appear as addresses 0x0000 to 0x025F for the external memory. Addressing above
address 0x825F is not recommended, since this will address an external memory loca-
tion that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from 0x0260
to Ox825F. This is illustrated in Figure 17.
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Figure 17. Address Map with 32 KB External Memory

Memory Configuration
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Since the External Memory is mapped after the Internal Memory as shown in Figure 11,
only 64,928 bytes of External Memory is available by default (address space 0x0000 to
0x025F is reserved for Internal Memory). However, it is possible to take advantage of
the entire External Memory by masking the higher address bits to zero. This can be
done by using the XMMn bits and control by software the most significant bits of the
address. By setting Port C to output 0x00, and releasing the most significant bits for nor-
mal Port Pin operation, the Memory Interface will address 0x0000 - Ox1FFF. See code
example below.

Assembly Code Example®

: OFFSET is defined to 0x2000 to ensure

; external nenory access

; Configure Port C (address high byte) to
; output O0x00 when the pins are rel eased
; for normal Port Pin operation

Idi rl16, OxFF
out DDRC, rl16
Idi r16, 0x00
out PORTC, rl6
. release PC7:5
Idi  r16, (1<<XMML) | (1<<XMWD)
out SFIOR r16
wite OXAA to address 0x0001 of external
; menory
Idi r16, Oxaa
sts Ox0001+OFFSET, r16
; re-enable PC7:5 for external menory
Idi r16, (0<<XMML)| (0<<XMWD)
out SFIOR r16
store 0x55 to address (OFFSET + 1) of
; external menory
Idi r16, 0x55
sts Ox0001+OFFSET, r16

C Code Example®
#define OFFSET 0x2000

voi d XRAM exanpl e(voi d)

{
unsi gned char *p = (unsigned char *) (COFFSET + 1);

DDRC = OxFF;
PORTC = 0x00;

SFI OR = (1<<XMML) | (1<<XMWD);

*p = Oxaa,
SFI OR = 0x00;
*p = 0x55;

}

Note: 1. The example code assumes that the part specific header file is included.

Care must be exercised using this option as most of the memory is masked away.
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System Clock and
Clock Options

Clock Systems and their

Distribution

CPU Clock — clkepy

I/O Clock — clkq

2512F-AVR-12/03

Figure 18 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes” on page 40. The clock systems
are detailed below.

Figure 18. Clock Distribution

General I/O Flash and
Modules CPU Core RAM EEPROM
A A A A A

clk,o AVR Clock K gy
Control Unit
CII(FLASH
A
Reset Logic Watchdog Timer
+ { A
Source clock Watchdog clock

Clock Watchdog

Multiplexer Oscillator
A A A A A

External RC
Oscillator

External Clock

Crystal
Oscillator

Low-frequency
Crystal Oscillator

Calibrated RC
Oscillator

The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister, and the Data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

The 1/0O clock is used by the majority of the 1/O modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the I/O clock is halted.
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The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Table 5. Device Clocking Options Select®

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given i