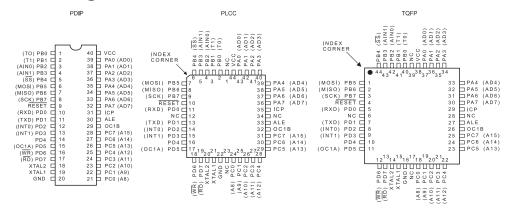
Features

- Utilizes the AVR® RISC Architecture
- AVR High-performance and Low-power RISC Architecture
 - 118 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Up to 8 MIPS Throughput at 8 MHz
- Data and Nonvolatile Program Memory
 - 4K/8K Bytes of In-System Programmable Flash


Endurance: 1,000 Write/Erase Cycles

- 256/512 Bytes of SRAM
- 256/512 Bytes of In-System Programmable EEPROM

Endurance: 100,000 Write/Erase Cycles

- Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
 - One 8-bit Timer/Counter with Separate Prescaler
 - One 16-bit Timer/Counter with Separate Prescaler
 Compare, Capture Modes and Dual 8-, 9- or 10-bit PWM
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with On-chip Oscillator
 - Programmable Serial UART
 - Master/Slave SPI Serial Interface
- Special Microcontroller Features
 - Low-power Idle and Power Down Modes
 - External and Internal Interrupt Sources
- Specifications
 - Low-power, High-speed CMOS Process Technology
 - Fully Static Operation
- Power Consumption at 4 MHz, 3V, 25°C
 - Active: 3.0 mA
 - Idle Mode: 1.0 mA
 - Power Down Mode: <1 μA
- I/O and Packages
 - 32 Programmable I/O Lines
 - 40-pin PDIP, 44-pin PLCC and TQFP
- Operating Voltages
 - 2.7 6.0V (AT90S4414-4 and AT90S8515-4)
 - 4.0 6.0V (AT90S4414-8 and AT90S8515-8)
- Speed Grades
 - 0 4 MHz (AT90S4414-4 and AT90S8515-4)
 - 0 8 MHz (AT90S4414-8 and AT90S8515-8)

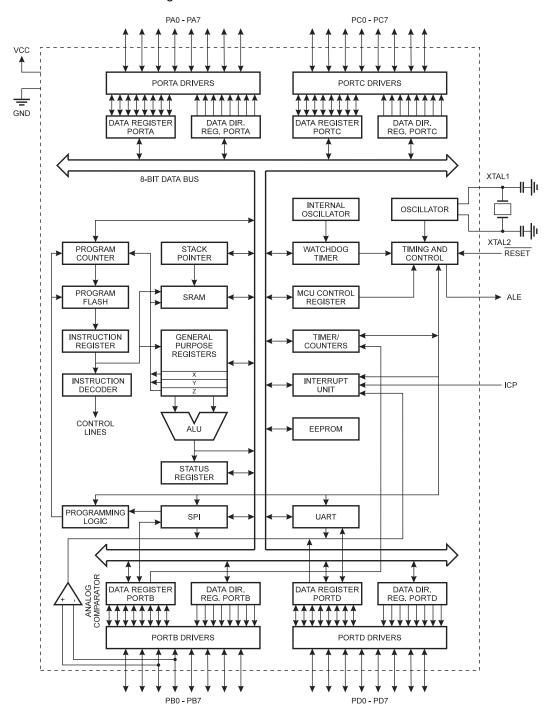
Pin Configurations

8-bit **AVR**® Microcontroller with 4K/8K bytes In-System Programmable Flash

AT90S4414 AT90S8515

Rev. 0841ES-04/99

Note: This is a summary document. For the complete 101-page document, please visit our web site at www.atmel.com or e-mail at literature@atmel.com and request literature #0841E.



Description

The AT90S4414/AT90S8515 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S4414/8515 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 1. The AT90S4414/8515 Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The AT90S4414/8515 provides the following features: 4K/8K bytes of In-System Programmable Flash, 256/512 bytes EEPROM, 256/512 bytes SRAM, 32 general purpose I/O lines, 32 general purpose working registers, flexible timer/counters with compare modes, internal and external interrupts, a programmable serial UART, programmable Watchdog Timer with internal oscillator, an SPI serial port and two software selectable power saving modes. The Idle Mode stops the CPU while allowing the SRAM, timer/counters, SPI port and interrupt system to continue functioning. The power down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.

The device is manufactured using Atmel's high density non-volatile memory technology. The on-chip in-system program-mable Flash allows the program memory to be reprogrammed in-system through an SPI serial interface or by a conventional nonvolatile memory programmer. By combining an enhanced RISC 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT90S4414/8515 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The AT90S4414/8515 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Comparison Between AT90S4414 and AT90S8515

The AT90S4414 has 4K bytes of In-System Programmable Flash, 256 bytes of EEPROM and 256 bytes of internal SRAM. The AT90S8515 has 8K bytes of In-System Programmable Flash, 512 bytes of EEPROM and 512 bytes of internal SRAM. Table 1 summarizes the different memory sizes for the two devices.

Table 1. Memory Size Summary

Part	Flash	EEPROM	SRAM
AT90S4414	4K bytes	256 bytes	256 bytes
AT90S8515	8K bytes	512 bytes	512 bytes

Pin Descriptions

VCC

Supply voltage

GND

Ground

Port A (PA7..PA0)

Port A is an 8-bit bidirectional I/O port. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers can sink 20mA and can drive LED displays directly. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not active.

Port A serves as Multiplexed Address/Data input/output when using external SRAM.

Port B (PB7..PB0)

Port B is an 8-bit bidirectional I/O port with internal pull-up resistors. The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not active.

Port C (PC7..PC0)

Port C is an 8-bit bidirectional I/O port with internal pull-up resistors. The Port C output buffers can sink 20 mA. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not active.

Port C also serves as Address output when using external SRAM.

Port D (PD7..PD0)

Port D is an 8-bit bidirectional I/O port with internal pull-up resistors. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.

RESET

Reset input. A low level on this pin for more than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier

ICP

ICP is the input pin for the Timer/Counter1 Input Capture function.

OC1B

OC1B is the output pin for the Timer/Counter1 Output CompareB function

ALE

ALE is the Address Latch Enable used when the External Memory is enabled. The ALE strobe is used to latch the loworder address (8 bits) into an address latch during the first access cycle, and the AD0-7 pins are used for data during the second access cycle.

Architectural Overview

The fast-access register file concept contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file - in one clock cycle.

Six of the 32 registers can be used as three 16-bits indirect address register pointers for Data Space addressing - enabling efficient address calculations. One of the three address pointers is also used as the address pointer for the constant table look up function. These added function registers are the 16-bits X-register, Y-register and Z-register.

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register operations are also executed in the ALU. Figure 2 shows the AT90S4414/8515 AVR Enhanced RISC microcontroller architecture.

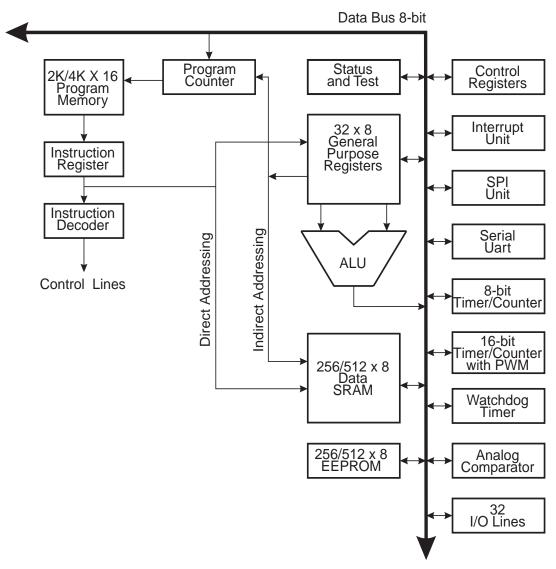


Figure 2. The AT90S4414/8515 AVR Enhanced RISC Architecture

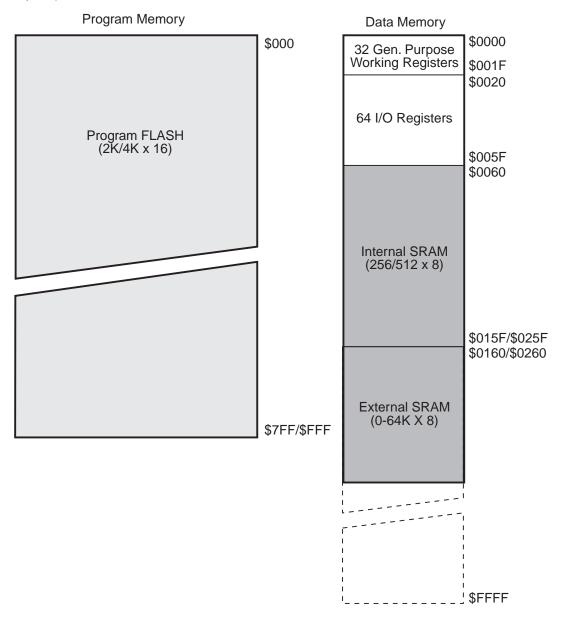
In addition to the register operation, the conventional memory addressing modes can be used on the register file as well. This is enabled by the fact that the register file is assigned the 32 lowermost Data Space addresses (\$00 - \$1F), allowing them to be accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, A/D-converters, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the register file, \$20 - \$5F.

The AVR uses a Harvard architecture concept - with separate memories and buses for program and data. The program memory is executed with a two stage pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is in-system programmable Flash memory.

With the relative jump and call instructions, the whole 2K/4K address space is directly accessed. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The 16-bit stack pointer SP is read/write accessible in the I/O space.



The 256/512 bytes data SRAM can be easily accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address the higher the priority.

Figure 3. Memory Maps

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG	ı	T	Н	S	V	N	Z	С	18
\$3E (\$5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	19
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	19
\$3C (\$5C)	Reserved									
\$3B (\$5B)	GIMSK	INT1	INT0	-	-	-	-	-	-	24
\$3A (\$5A)	GIFR	INTF1	INTF0							24
\$39 (\$59)	TIMSK	TOIE1	OCIE1A	OCIE1B	-	TICIE1	-	TOIE0	-	25
\$38 (\$58)	TIFR	TOV1	OCF1A	OCF1B	-	ICF1	-	TOV0	-	25
\$37 (\$57)	Reserved									
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR	SRE	SRW	SE	SM	ISC11	ISC10	ISC01	ISC00	27
\$34 (\$54)	Reserved									
\$33 (\$53)	TCCR0	-	-	-	-	-	CS02	CS01	CS00	30
\$32 (\$52)	TCNT0	Timer/Cour	nter0 (8 Bit)							31
	Reserved		` /							
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	PWM11	PWM10	32
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	-	-	CTC1	CS12	CS11	CS10	33
\$2D (\$4D)	TCNT1H		nter1 - Counter	Register High	Bvte					34
\$2C (\$4C)	TCNT1L		nter1 - Counter							34
\$2B (\$4B)	OCR1AH				ter A High Byte					35
\$2A (\$4A)	OCR1AL				ter A Low Byte					35
\$29 (\$49)	OCR1BH				ter B High Byte					35
\$28 (\$48)	OCR1BL				ter B Low Byte					35
	Reserved	Tillion Cour	itori Gatpat C	zempare regio	ioi B Low Byto					
\$25 (\$45)	ICR1H	Timer/Cour	nter1 - Input Ca	nture Register	High Byte					36
\$24 (\$44)	ICR1L		nter1 - Input Ca							36
Ψ Σ + (Ψ++)	Reserved	Tillici/Coul	iterr input oc	ptare register	LOW Byte					
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	38
\$20 (\$40)	Reserved	_	l	l	WDIOL	WDL	WDIZ	WDII	WDIO	
\$1F (\$3F)	EEARH ¹				-	_	_	-	EEAR8	39
\$1E (\$3E)	EEARL	EEDDOM /	Address Regist	or Low Buto		-	-	-	LLANO	39
\$1D (\$3D)	EEDR		Data Register	er Low Dyte						40
\$1C (\$3C)	EECR	LLFROWL	Jaia Register	-	-	-	EEMWE	EEWE	EERE	40
\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	55
		DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	
\$1A (\$3A)	DDRA									55
\$19 (\$39)	PINA	PINA7	PINA6	PINA5 PORTB5	PINA4 PORTB4	PINA3	PINA2	PINA1	PINA0	55 57
\$18 (\$38) \$17 (\$37)	PORTB	PORTB7	PORTB6			PORTB3	PORTB2	PORTB1	PORTB0	57
	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	57
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	57
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	62
\$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	62
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	62
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	64
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	64
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	64
\$0F (\$2F)	SPDR	SPI Data R								45
\$0E (\$2E)	SPSR	SPIF	WCOL	-	-	-	-	-	-	45
\$0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	44
\$0C (\$2C)	UDR		Data Register	1		ı				48
\$0B (\$2B)	USR	RXC	TXC	UDRE	FE	OR	-	-	-	49
\$0A (\$2A)	UCR	RXCIE	TXCIE	UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	49
\$09 (\$29)	UBRR	UART Bau	d Rate Registe	<u> </u>						51
\$08 (\$28)	ACSR	ACD	-	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	52
	Reserved									
\$00 (\$20)										

- Notes: 1. EEARH only present for AT90S8515
 - 2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
 - 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AN	D LOGIC INSTRUC	TIONS			l
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd v Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	Rd ← \$FF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
BRANCH INSTRU			· ·		•
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK		4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(T = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1		1/2
				None	
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2

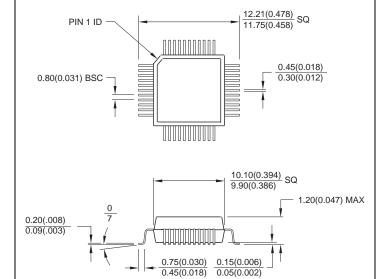
Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clocks
DATA TRANSFE	R INSTRUCTIONS		•	•	
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD LD	Rd, Y+ Rd, - Y	Load Indirect and Post-Inc. Load Indirect and Pre-Dec.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LDD	Rd, - Y Rd, Y+q	Load Indirect and Pre-Dec. Load Indirect with Displacement	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$ $Rd \leftarrow (Y + q)$	None None	2
LD	Rd, Z	Load Indirect Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z)$ $Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM	D4 D	Load Program Memory	R0 ← (Z)	None	3
OUT	Rd, P P, Rr	In Port Out Port	$Rd \leftarrow P$ $P \leftarrow Rr$	None None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
_	T INSTRUCTIONS	FOR Register Horn Stack	Nu ← STACK	INOTIE	
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	S	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	S	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
0=0					1
SEC		Set Carry	C ← 1	С	
CLC		Clear Carry	C ← 0	С	1
CLC SEN		Clear Carry Set Negative Flag	C ← 0 N ← 1	C N	1
CLC SEN CLN		Clear Carry Set Negative Flag Clear Negative Flag	$ \begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \end{array} $	C N N	1
CLC SEN CLN SEZ		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \end{array}$	C N N Z	1 1 1
CLC SEN CLN SEZ CLZ		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag	$ \begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \end{array} $	C N N Z Z	1 1 1
CLC SEN CLN SEZ CLZ SEI		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable	$ \begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \end{array} $	C N N Z	1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \end{array}$	C N N Z Z	1 1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI SES		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \end{array}$	C N N Z Z I I	1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \end{array}$	C N N Z Z	1 1 1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI SES CLS		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 0 \end{array}$	C N N Z Z Z I I S S S	1 1 1 1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI SES CLS SEV		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow.	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \end{array}$	C N N Z Z Z I I S S S V	1 1 1 1 1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI SES CLS SEV CLV		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \\ V \leftarrow 0 \end{array}$	C N N Z Z I S S V V	1 1 1 1 1 1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI SES CLS SES CLS SEV CLV SET		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \\ V \leftarrow 0 \\ T \leftarrow 1 \end{array}$	C N N Z Z Z I I S S S V V V T T	1 1 1 1 1 1 1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI SES CLS SES CLS SEV CLV SET CLT SEH CLH		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG Clear T in SREG	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \\ V \leftarrow 0 \\ T \leftarrow 1 \\ T \leftarrow 0 \end{array}$	C N N Z Z Z I I S S S V V V T T T	1 1 1 1 1 1 1 1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI SES CLS SEV CLS SEV CLV SET CLT SEH CLH NOP		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG Clear T in SREG Set Half Carry Flag in SREG	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \\ V \leftarrow 0 \\ T \leftarrow 1 \\ T \leftarrow 0 \\ H \leftarrow 1 \\ \end{array}$	C N N Z Z Z I I S S S V V V T T T H	1 1 1 1 1 1 1 1 1 1 1 1 1
CLC SEN CLN SEZ CLZ SEI CLI SES CLS SES CLS SEV CLV SET CLT SEH CLH		Clear Carry Set Negative Flag Clear Negative Flag Set Zero Flag Clear Zero Flag Global Interrupt Enable Global Interrupt Disable Set Signed Test Flag Clear Signed Test Flag Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG Clear T in SREG Set Half Carry Flag in SREG Clear Half Carry Flag in SREG	$\begin{array}{c} C \leftarrow 0 \\ N \leftarrow 1 \\ N \leftarrow 0 \\ Z \leftarrow 1 \\ Z \leftarrow 0 \\ I \leftarrow 1 \\ I \leftarrow 0 \\ S \leftarrow 1 \\ S \leftarrow 1 \\ S \leftarrow 0 \\ V \leftarrow 1 \\ V \leftarrow 0 \\ T \leftarrow 1 \\ T \leftarrow 0 \\ H \leftarrow 1 \\ \end{array}$	C N N Z Z Z I I S S S V V V T T T H H H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

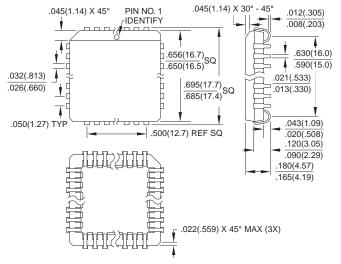
Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7 - 6.0V	AT90S4414-4AC	44A	Commercial
		AT90S4414-4JC	44J	(0°C to 70°C)
		AT90S4414-4PC	40P6	
		AT90S4414-4AI	44A	Industrial
		AT90S4414-4JI	44J	(-40°C to 85°C)
		AT90S4414-4PI	40P6	
8	4.0 - 6.0V	AT90S4414-8AC	44A	Commercial
		AT90S4414-8JC	44J	(0°C to 70°C)
		AT90S4414-8PC	40P6	
		AT90S4414-8AI	44A	Industrial
		AT90S4414-8JI	44J	(-40°C to 85°C)
		AT90S4414-8PI	40P6	

Note: Order AT904414A-XXX for devices with the FSTRT Fuse programmed.

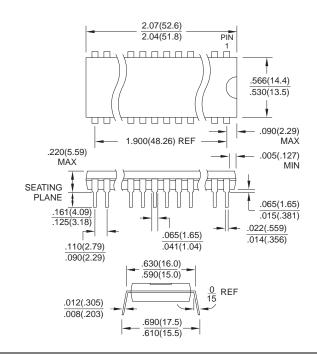

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7 - 6.0V	AT90S8515-4AC	44A	Commercial
		AT90S8515-4JC	44J	(0°C to 70°C)
		AT90S8515-4PC	40P6	
		AT90S8515-4AI	44A	Industrial
		AT90S8515-4JI	44J	(-40°C to 85°C)
		AT90S8515-4PI	40P6	
8	4.0 - 6.0V	AT90S8515-8AC	44A	Commercial
		AT90S8515-8JC	44J	(0°C to 70°C)
		AT90S8515-8PC	40P6	
		AT90S8515-8AI	44A	Industrial
		AT90S8515-8JI	44J	(-40°C to 85°C)
		AT90S8515-8PI	40P6	

Note: Order AT90S8515A-XXX for devices with the FSTRT Fuse programmed.


	Package Type				
44A	44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)				
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)				
40P6	40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)				

Packaging Information

44A, 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP) Dimensions in Millimeters and (Inches)*



44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters)

*Controlling dimension: millimeters

40P6, 40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-011 AC

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

Åtmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing $^{\text{\tiny{8}}}$ and/or $^{\text{\tiny{TM}}}$ are registered trademarks and trademarks of Atmel Corporation.

Printed on recycled paper.